Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Adv Virol ; 2023: 9313666, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2237677

RESUMEN

SARS-CoV-2 is a major public health problem worldwide. Since its emergence, several diagnostic kits have been developed to ensure rapid patient management. The aim of our study is to check the performance of the new Moroccan SARS-CoV-2 detection kit: MAScIR SARS-CoV-2 M 2.0. The following parameters were studied: repeatability, reproducibility, analytical specificity, analytical sensitivity, and comparison with the GeneFinder™ COVID-19 Plus RealAmp Kit. In addition, an external quality evaluation comprising five specimens was carried out as part of an international program for the external quality evaluation of sublaboratories of the WHO and the Laboratory Office of the National Institute of Hygiene of Morocco. The results of all parameters studied showed an analytical performance that complied with the requirements of the method verification/validation protocol adopted by the Central Laboratory of Virology and met the recommendations of COFRAC (French Accreditation Committee). During the current study, the sequencing of some randomly selected positive samples was performed, among which the carriers of the Alpha variant, the Delta variant, and the Omicron variant were detected. These results allowed us to deduce that this kit was valid for detecting these three variants.

2.
J Infect Dev Ctries ; 16(8): 1258-1268, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2030105

RESUMEN

INTRODUCTION: Since the COVID-19 pandemic began in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continuously evolved with many variants of concern emerging across the world. METHODOLOGY: In order to monitor the evolution of these variants in Morocco, we analyzed a total of 2130 genomes of the delta variant circulating around the world. We also included 164 Moroccan delta variant sequences in our analysis. RESULTS: Our findings suggest at least four introductions from multiple international sources and a rise of a dominant delta sub-lineage AY.33 in Morocco. Moreover, we report three mutations in the N-terminal domain of the S protein specific to the Moroccan AY.33 isolates, T29A, T250I and T299I. The effect of these mutations on the secondary structure and the dynamic behavior of the S protein N-terminal domain was further determined. CONCLUSIONS: We conclude that these mutations might have functional consequences on the S protein of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , Marruecos/epidemiología , Pandemias , Filogeografía , SARS-CoV-2/genética
3.
Microbiol Resour Announc ; 11(5): e0016922, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1788922

RESUMEN

Here, we report the near-complete genome sequence and genetic variations of a clinical sample of SARS-CoV-2 for the newly emerged Omicron variant (BA.1). The sample was collected from a nasopharyngeal swab of a Moroccan patient, and the sequencing was done using Ion S5 technology.

4.
Microbiol Resour Announc ; 10(16)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1199753

RESUMEN

Here, we report the near-complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) harboring the N501Y mutation assigned to the B.1.1.7 lineage. The sample was collected from a nasopharyngeal swab of a female patient from Temara, Morocco, and the sequencing was done using Ion S5 technology.

5.
Microbiol Resour Announc ; 10(11)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1143001

RESUMEN

We report the nearly complete genome sequence and the genetic variations of a clinical sample of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) collected from a nasopharyngeal swab specimen from a male patient from Harhoura-Rabat, Morocco. The sequence, which was obtained using Ion Torrent technology, is valuable as it carries a recently described deletion (His69-Val70) and substitution (Asn439Lys).

6.
Pathogens ; 9(10)2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: covidwho-904960

RESUMEN

The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.

7.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: covidwho-696037

RESUMEN

Here, we report the draft genome sequences of six severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains. SARS-CoV-2 is responsible for the COVID-19 pandemic, which started at the end of 2019 in Wuhan, China. The isolates were obtained from nasopharyngeal swabs from Moroccan patients with COVID-19. Mutation analysis revealed the presence of the spike D614G mutation in all six genomes, which is widely present in several genomes around the world.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA